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Computational method for aperiodic systems: Molecular mechanics simulations

Hanae Nozaki
Advanced Research Laboratory, Toshiba Corporation, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan

~Received 26 March 1997!

For aperiodic systems with long-range interactions, an algorithm of molecular mechanics~MM ! calculations
is proposed. In order to treat the aperiodic system as an infinite system containing completely isolated disorder,
the crystal structure is described based on the deviation from a periodic system, and potential energy and forces
are evaluated as differences from those for the periodic system. The MM calculations for ionic systems
containing local impurity atoms have been carried out as test calculations. The obtained lattice relaxation and
energy of impurities have been compared with the results of a conventional supercell method performed based
on five different sizes of unit cells, and the advantages of the proposed algorithm in terms of computational
accuracy and time have been ascertained. For aperiodic systems where the charge neutrality has been lost
because of the existence of ionized impurities, this algorithm realizes MM calculations without artificial charge
neutral conditions which are usually required in the supercell method. The algorithm also has a possibility of
the application to molecular dynamics calculations.@S1063-651X~97!01610-3#

PACS number~s!: 02.70.Ns, 61.72.2y
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I. INTRODUCTION

Molecular mechanics~MM ! and molecular dynamics
~MD! simulations have become recognized as useful to
for research in various scientific fields@1,2#. Recently, their
importance has been growing, particularly in applications
complex and large-sized systems. Amorphous structures
purity systems, liquid crystals, polymers, and so on are m
tioned as such systems, and several phenomena such a
purity diffusion, surface adsorption, ion implantatio
radiation damage, and fracture are also associated
complex-structured systems. Since a crystallographic per
icity has disappeared in these systems, a supercell meth
usually adopted in MM and MD calculations for them. Th
method is an expedient approach to aperiodic systems,
has been widely applied in bothab initio and empirical cal-
culations. Particularly as for the former, well-developed e
ergy band calculations can be directly applied. In the sup
cell method, aperiodic systems are approximately descr
by assuming the periodic boundary condition, so that lar
sized supercells are required for the computational accu
in order to diminish interactions with crystal imperfectio
involved in surrounding cells. However, it is difficult to tre
sufficiently large-sized systems because of the restrictio
computational time, although computer abilities have be
increasing rapidly. Thus the problem of the numerical in
curacy depending on system sizes still remains unsolve
the supercell method, and several investigations concer
it have been reported@3#. This problem is most serious fo
long-range interatomic interactions. Generally, imperfectio
in the above-mentioned aperiodic systems are given a
charged particle, such as impurities in semiconductors
that it is necessary to treat a Coulomb interaction precis
without the dependence on system sizes. However, to re
the influence of system sizes and obtain accuracy an ord
magnitude higher in the calculation of total energies, o
needs a larger system whose constituent atoms are abou3

times as many as the prior system because of the long-r
r 21 interaction, and thus computational time of about 16
561063-651X/97/56~4!/4830~7!/$10.00
ls

o
-

n-
im-

ith
d-
is

nd

-
r-
ed
-

cy

of
n
-
in
ng

s
a
o

ly
ce
of
e
10
ge

times longer will be consumed. Although this estimation
rough, it implies that even checking the dependence on
tem sizes is difficult for Coulomb interacting systems.

As a sophisticated approach to aperiodic systems
Green-function method to calculate the electronic states
deep levels in semiconductors was developed independe
by two groups in the late 1970s@4,5#. In this method, a
localized defect, which cannot be described based on
panded Bloch states, is represented by a perturbation po
tial for a perfect crystal, and this perturbation potential
determined self-consistently so as to coincide with the Gr
function for the perfect crystal at infinity. This Green
function method is a skillful approach to aperiodic system
It is, however, necessary to realize a more efficient calcu
tion of forces acting on each constituent atom from the vie
point of MM and MD calculations.

It is the purpose of this paper to propose a method of M
and MD calculations for aperiodic systems. This algorithm
based on the premise that interatomic interactions have b
determined by some method beforehand. Empirical in
atomic potentials enable us to perform MM and MD calc
lations for large-sized systems practically, whereas th
function forms directly influence the accuracy of calculat
physical quantities. In the present algorithm, when int
atomic potential functions have been given, the focus is
how accurately physical quantities of the aperiodic syst
can be evaluated for an infinite system containing comple
isolated disorder. For this purpose, atomic positions of
aperiodic system are described by the deviation from a p
odic system, and potential energy and forces are calcul
based on this description. As interatomic interactions, typ
long-range ones whose function forms are given byr 2n are
considered. In the MM calculations for ionic systems, adv
tages with respect to both numerical accuracy and comp
tional time have been ascertained as compared with the
ventional supercell method.

This paper is organized as follows: In the next section,
formulation of the present algorithm is described. In Sec.
the MM calculations for ionic systems containing substi
4830 © 1997 The American Physical Society
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56 4831COMPUTATIONAL METHOD FOR APERIODIC . . .
tional impurity atoms are reported as numerical tests, and
obtained lattice relaxation and energy of impurities are co
pared with those of the supercell method. For more deta
comparisons between the two methods, discussions conc
ing the computational accuracy and time are given in S
IV. Finally, a short summary is presented in Sec. V.

II. FORMULATION

A. Crystal structures

In this paper, aperiodic systems are defined as infi
systems where atomic positions are locally disordered.
such an aperiodic system, a crystal containing local impu
atoms is considered here. Those impurity atoms cause la
relaxation in a local region, and this relaxation can be
scribed by the deviation from a crystal containing no lo
impurity atoms, which is called the reference system here
ter. From this viewpoint, the position of thei th atom in the
aperiodic system is given by

r ~ i !5r0~ i !1Dr ~ i !, ~1!

where r0( i ) represents the atomic position in the referen
system, andDr ( i ) represents the displacement of thei th
atom caused by the local impurity atoms.

As mentioned above, it is reasonable to consider a re
ation region centered at the local impurity atoms. This reg
RD is determined so as to contain all atoms whoseuDr ( i )u is
not zero. In the center ofRD , uDr ( i )u is relatively large, but
it becomes negligibly small near the boundary ofRD . The
number of atoms insideRD is given byND , and it always
showsND.Nimp , whereNimp is the number of the impurity
atoms. On the other hand, the reference system does not
any local impurity atoms, so that it has translational perio
icity like perfect crystals. Thusr0( i ) is written also in the
following notation:

r0~ i !5r0S s
l D , ~2!

wherer0( l
s) means the position of thesth atom in thel th unit

cell in the reference system.

B. Interatomic potentials

In the present algorithm, pair-type potentials are cons
ered as interatomic interactions. The pair-type potentiaf
between thei th and thej th atoms is represented by the fo
lowing expression:

f~r i j !5(
j

fj~r i j !5(
j

Aj~ i !Aj~ j !cj~r i j !, ~3!

wherer i j is the distance between the atomsi and j which is
given by

r i j 5ur i j u, ~4!

r i j 5r ~ i !2r ~ j !. ~5!
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In Eq. ~3!, Aj( i ) represents the potential parameter of thei th
atom, and the subscriptj specifies the type of interatomi
interactions. In the case of Coulomb interaction,fCoul is
given by

fCoul~r i j !5
e2

4p«0

q~ i !q~ j !

r i j
, ~6!

where q( i ) is the point charge of thei th atom and corre-
sponds to the potential parameterACoul( i ). Other interactions
written by Eq.~3! are multipole-multipole and van der Waa
interactions whose potential functions are given byr 2n.
These interactions with a small value ofn, especially the
Coulomb one, are well known as a long-range interacti
and the Ewald method is generally required for their latt
sums. As discussed in Sec. I, the problem of the super
method is most serious in calculations for systems with lo
range interactions. Based on Eq.~3!, general long-range in-
teractions withr 2n function forms can be treated in thi
algorithm. Interatomic interactions which are not written
Eq. ~3! are Born-Mayer-type potential, many-body intera
tions such as a valence-force field model, and so on. S
these interactions are regarded as short-range ones, the
no problem in evaluating physical quantities based on th
by means of a conventional way. Therefore the assump
of Eq. ~3! does not impose any restrictions on applications
this algorithm practically.

The potential parameter for the aperiodic systemAj( i )
obeys the following rule:

Aj~ i !H ÞAj
0~ i ! for impurity atoms ~ i 51, . . . ,Nimp!

5Aj
0~ i ! otherwise,

~7!

whereAj
0( i ) is the potential parameter of the correspondi

i th atom in the reference system, and is also represente

Aj
0~ i !5Aj

0S s
l D5Aj

0S s
0D for all l , ~8!

because of the translational periodicity of the reference s
tem. According to values ofAj

0( i ) and Aj( i ), all types of
impurity atoms~substitutional impurity atoms, interstitial im
purity atoms, and defects! can be treated as follows: Whe
Aj

0( i )Þ0 andAj( i )@ÞAj
0( i )#Þ0, the atomi in the aperiodic

system is given as a substitutional impurity atom. And,
interstitial impurity atom is given byAj

0( i )50 and Aj( i )
Þ0; a defect is given byAj

0( i )Þ0 andAj( i )50, where the
atoms whose potential parameters are zero are called du
atoms. As for interstitial impurity atoms, dummy atoms a
initially positioned in the reference system so as not
change its periodicity, and defects are treated as dummy
oms in the aperiodic system. The consideration of th
dummy atoms has no effect on the evaluation of phys
quantities for both the reference and the aperiodic syste
because their potential parameters have been set at zer

C. Energies and forces

In MM and MD simulations, it is necessary to calcula
total potential energies and forces acting on constituent
oms. In the present algorithm, these quantities for the ap
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4832 56HANAE NOZAKI
odic system are estimated as differences from the refere
system. Then, the energy differenceDE and the force differ-
enceDF( i ) are defined as

DE5E2E0 ~9!

and

DF~ i !5F~ i !2F0~ i !, ~10!

whereE andE0 are the total potential energies for the ap
riodic and the reference systems, andF( i ) andF0( i ) are the
forces acting on thei th atom in the aperiodic and the refe
ence systems, respectively. SinceE and E0 represent the
total potential energies for the whole systems, their val
are divergent. However, the energy differenceDE has a fi-
nite value, which corresponds to the fact that the lattice
laxation occurs only in a local region. SinceDE represents
the energy change caused by local impurities, it is called
impurity energy hereafter.

The impurity energyDE and the force differenceDF( i ),
whose definitions are given by Eqs.~9! and~10!, are explic-
itly calculated from two terms as follows: First,DE is writ-
ten

DE5(
j

DEj5(
j

@DEj
~1!1DEj

~2!#, ~11!

where

DEj
~1!5 (

i

Nimp

@Aj~ i !2Aj
0~ i !#ej

0~ i !1 (
i

Nimp

@Aj~ i !2Aj
0~ i !#

3 (
j . i

Nimp

@Aj~ j !2Aj
0~ j !#cj~r i j

0 !, ~12!

DEj
~2!5 (

i PRD

ND

Aj~ i !(
j . i

all

Aj~ j !$dr i j cj
@1#~r i j

0 !

1 1
2 @dr i j #

2cj
@2#~r i j

0 !%1O„~dr !3
…, ~13!

with

cj
@k#~r i j

0 ![
dk

d@r i j #
k cj~r i j !U

r 5r 0

~14!

and

dr i j 5ur i j u2ur i j
0 u. ~15!

Second,DF( i ) is written

DF~ i !5(
j

@DFj~ i !#5(
j

@DFj
~1!~ i !1DFj

~2!~ i !#,

~16!

where thea components ofDFj
(1)( i ) andDFj

(2)( i ) are given
by
ce

-

s

-

e

DFj,a
~1! ~ i !5@Aj~ i !2Aj

0~ i !# f j,a
0 ~ i !

1Aj~ i ! (
j

Nimp

@Aj~ j !2Aj
0~ j !#cj,a

^1& ~r i j
0 !, ~17!

DFj,a
~2! ~ i !5Aj~ i !(

j

all

Aj~ j !F(
b

Dr i j ,bcj,ab
^2& ~r i j

0 !

1 1
2 (

b,g
Dr i j ,bDr i j ,gcj,abg

^3& ~r i j
0 !G1O„~Dr !3

…,

~18!

with

cj,ab...
^k& ~r i j

0 ![~21!k
]k

]r i j ,a]r i j ,b•••
cj~r i j !U

r 5r 0

~19!

and

Dr i j ,a5~Dr i j !a5~r i j 2r i j
0 !a . ~20!

In Eqs. ~12! and ~17!, ej
0 and f j,a

0 represent the physica
quantities for the reference system, and are given by

ej
0~ i !5ej

0S s
l D5ej

0S s
0D5(

s8

N0

(
l 8

all

Aj
0S s8

l 8 Dcj~r
~0
s

l 8
s8

!

0
! ~21!

and

f j,a
0 ~ i !5 f j,a

0 S s
l D5 f j,a

0 S s
0D5(

s8

N0

(
l 8

all

Aj
0S s8

l 8 Dcj,a
^1& ~r

~0
s

l 8
s8

!

0
!.

~22!

Since the reference system is a periodic one, the notationl
s)

is adopted in Eqs.~21! and ~22!, andN0 means the numbe
of atoms per unit cell. Because of the translational period
ity of the reference system, the Ewald method can be app
to the lattice sums in Eqs.~21! and ~22! for the long-range
r 2n interactions@6,7#. By using ej

0(0
s) and f j

0(0
s), the total

potential energy per unit cellEcell
0 and the force acting on the

sth atom in the 0th unit cellF0(0
s) are calculated for the

reference system as the following expressions:

Ecell
0 5(

j
F1

2 (
s

N0

Aj
0S s

0Dej
0S s

0D G ~23!

and

F0S s
0D5(

j
FAj

0S s
0D f j

0S s
0D G . ~24!

According to the framework of this algorithm, there a
two kinds of discrepancies between the aperiodic and
corresponding reference systems: one is the discrepancy
tween the potential parameters and the other is that betw
the atomic positions. Each of them independently contribu
to the two terms in Eqs.~11! and ~16! as follows: The first
termsDEj

(1) andDFj
(1)( i ) are derived from the discrepanc

betweenAj( i ) andAj
0( i ), so that the summation in Eqs.~12!
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56 4833COMPUTATIONAL METHOD FOR APERIODIC . . .
and ~17! is running over theNimp impurity atoms only. On
the other hand, the second termsDEj

(2) and DFj
(2)( i ) are

derived from the discrepancy betweenr ( i ) and r0( i ), and
thus are given as a function ofdr i j or Dr i j as shown in Eqs.
~13! and~18!. In these equations, the summation( j

all is taken
for all atoms interacting with thei th atom inside the relax
ation regionRD . Since the values ofdr i j andDr i j reach zero
rapidly as the atomj goes away from the relaxation regio
RD , rapid convergence can be achieved in the calculation
DEj

(2) and DFj
(2)( i ). The aperiodic system is characteriz

by the infiniteness as a crystal and the local disorder cau
by isolated impurities. The infiniteness is taken into acco
in the first termsDEj

(1) and DFj
(1)( i ) through the physica

quantities for the reference systemej
0(0

s) andf j
0(0

s). And, the
local disorder is described by the second termsDEj

(2) and
DFj

(2)( i ) which are given by the atomic displacements fro
the reference system.

From the mathematical viewpoint, the first termDEj
(1) is

regarded as the zero-order term in a Taylor expansion oE
for dr i j , andDFj

(1)( i ) is similarly regarded as that ofF( i )
for Dr i j . And, the second termsDEj

(2) andDFj
(2)( i ) corre-

spond to the higher-order terms in those Taylor expansio
which implies that a computational error occurs in the eva
ation of DEj

(2) and DFj
(2)( i ), if dr i j and Dr i j become con-

siderably large during MM and MD simulations. We ca
resolve this problem by changing the atomic positions in
reference systemr0( i ) so as to decreaseuDr ( i )u. This modi-
fication can be carried out by the consideration of dum
atoms in the reference system, such as in the abo
mentioned case of the interstitial impurity atoms.

In Eqs.~13! and ~18!, the summation( j
all is taken for all

atoms interacting with thei th atom inside the relaxation re
gion RD . The calculations ofDEj

(2) andDFj
(2)( i ) converge

rapidly, since these terms are given as a function ofdr i j or
Dr i j whose value reaches zero rapidly as the atomj goes
away from the relaxation regionRD . This rapid convergence
is obtained particularly in the calculation ofDFj

(2)( i ). How-
ever, in the calculation ofDEj

(2) based on the Coulomb in
teraction, the convergence is not so easily achieved bec
of the long-ranger 21 interaction and the existence of bo
cations and anions. Thus it is desirable to take the summa
so as to satisfy

(
j

all

q~ j !5 (
j

Nimp

@q~ j !2q0~ j !#, ~25!

which means that the summation( j
all in Eq. ~13! is taken to

keep the charge neutrality except for the impurity atoms,
same as in the Evjen method. From the same reason
relaxation regionRD also had better be determined so as
satisfy

(
i PRD

ND

q~ i !5 (
i

Nimp

@q~ i !2q0~ i !# ~26!

for energy calculations.
In MM calculations, each atomi is iteratively moved in

proportion to the forceF( i ) until the equilibrium structure is
obtained, and, in MD calculations, the position and the
of
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locity of each atomi at the timet1Dt are calculated base
on the forceF( i ) at the timet by solving Newton’s equa-
tions. In the present algorithm, the atomic position in t
aperiodic systemr ( i ) is given by Eq.~1! in each iteration
step of MM and MD calculations, where the atomic positi
in the reference systemr0(0

s) and the displacementDr ( i ) are
simultaneously calculated fromF0(0

s) and DF( i ), respec-
tively. The iterative calculation for the reference system
not required during the MM calculations, if an optimize
crystal structure has been adopted as an initial structur
the reference system. In MD calculations, the atomic velo
ties v( i ) andv0( i ) are also considered for the aperiodic a
the reference systems, andv( i ) is given by v0( i )1Dv( i ),
the same as in Eq.~1!. However, to apply the present algo
rithm directly to MD calculations, the unit cell of the refe
ence system should be taken much larger than that in M
calculations because of the lattice vibration caused by
temperature effect, and there is a difficulty in realizing
practical MD calculation based on the present algorit
from the viewpoint of the efficiency for computational tim
The size of the relaxation regionRD can be variable during
progress of the MM and MD calculations, which means th
it is possible to optimize the atomic numberND which gives
the degree of freedom to describe the lattice relaxation. T
variability of the relaxation regionRD is one of the advan-
tages of the proposed algorithm as compared with the su
cell method which does not allow the size of unit cells to
changed during the simulations.

III. MM CALCULATIONS

In this section, the numerical results of MM calculatio
are presented. In order to make a clear comparison betw
the present algorithm and the supercell method, the MM c
culations have been carried out for ionic systems with
long-range Coulomb interaction. As a typical ionic syste
NaCl alkali halide crystal has been chosen here. The in
atomic potential for NaCl is given by the Coulomb and t
Born-Mayer-type potentials as follows:

f~r i j !5
e2

4p«0

q~ i !q~ j !

r i j
1c1 expF2c2

r i j

r~ i !1r~ j !G ,
~27!

wherer( i ) represents the effective radius of thei th ion. The
constantsc1 andc2 are fixed at 1822 eV and 12.364, respe
tively @8#. The values of the potential parametersq( i ) and
r( i ) have been determined as follows:q( i )51 and r( i )
51.85 Å for Na ions, andq( i )521 andr( i )51.85 Å for
Cl ions. According to these potential parameters, the ca
lated perfect crystal structure is stabilized as a fcc struc
with the experimental lattice constant (a55.63 Å). In the
MM calculations based on the present algorithm, the form
lation described in Sec. II has been applied to the long-ra
Coulomb interaction. In the supercell method, the ene
change caused by local impuritiesDEcell

SC, which should be
compared with the impurity energyDE evaluated in the
present algorithm, is defined as

DEcell
SC5Ecell

SC2Ecell
SC,0, ~28!
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4834 56HANAE NOZAKI
where Ecell
SC and Ecell

SC,0 represent the total potential energie
per unit cell for systems with the impurity atoms and withou
any impurity atoms, respectively.

The MM calculations have been performed for the follow
ing two cases: one is a NaCl system where one Na ion h
been substituted by one Cl ion~case I!, and the other is a
NaCl system where two Na ions have been substituted
two Cl ions ~case II!. For these aperiodic systems, a perfe
crystal of NaCl whose cubic unit cell contains eight constit
ent ions has been considered as the reference system. In
MM calculations performed here, the perfect crystal of NaC
is given as an initial structure, and the same conditions~the
constant rate at which each atom is moved and the conv
gence criterion! are adopted in the two methods for a direc
comparison between them. The MM calculations have be
judged to be convergent, when the maximum force beca
0.01 times that in the initial structure.

Case I. The calculated stable structures of an aperiod
NaCl system containing one substitutional impurity ion a
shown in Fig. 1, where open and closed circles indicate t
ionic positions obtained by this algorithm and the superc
method, respectively. Whereas only one impurity ion~an
open diamond! exists in the structure of the present algo
rithm, artificial impurity ions~closed diamonds! also exist in
neighboring cells in the supercell method. The relaxation r
gion RD having the same size as the unit cell of the superc
method, which is shown by a dashed line, has been cons
ered in the present algorithm. Although the stable structu
calculated by the supercell method shows artificial latti
relaxation because of the periodic boundary condition, the
is no notable difference between the results of the two me

FIG. 1. Cross section of the stable structure of an aperiod
NaCl system containing one substitutional impurity Cl ion~case I!
calculated by the present algorithm~open circles!, together with that
of the supercell method~closed circles!. An open diamond shows
the impurity ion in the present algorithm, and closed diamon
show impurity ions in neighboring cells in the supercell method.
dashed line indicates a supercell with 216 constituent ions. Na c
ions and Cl anions are not distinguished in this figure for simplicit
t

as

y
t
-
the
l

r-
t
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e
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e
ll
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ll

id-
re
e
re
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ods inside the center unit cell. This result indicates that th
lattice relaxation in case I occurs in a relatively small region
and the unit cell used in the supercell method has adequ
size to describe such a small relaxation. However, a lar
difference between the two methods has been obtained
computational time, which means that CPU time consum
by the supercell method is about ten times longer than that
the proposed algorithm. Moreover, whereas the impurity e
ergy DE of 6.9 eV is obtained by the proposed algorithm
only DEcell

SC of 4.3 eV is evaluated by the supercell method
These disagreements are discussed in more detail in the n
section.

Case II. The calculated stable structures of aperiod
NaCl system containing two impurity atoms are shown i
Fig. 2, where the same notations as in Fig. 1 are adopted.
case II, the two substituted ions cause an anisotropic rela
ation which has a larger expansion than that of case I. T
relaxation regionRD containing 1815 (55311311) ions
has been adopted in the present algorithm. In Fig. 2, the tw
stable structures obtained give a disagreement which is s
nificant even inside the center cell. This result means th
for aperiodic systems containing a large relaxation such
case II, the supercell with 216 constituent ions is not larg
enough to investigate the structural stability.

In order to investigate the dependence on the size of s
percells and make a comparison between the two metho
quantitatively, the MM calculations for case II have bee
performed by using four more supercells of larger sizes. T
calculated displacements of four atoms, which are specifi
in Fig. 2, are shown in Fig. 3. The solid lines indicate th
relaxation ratio to the atomic displacements calculated by t

ic

s

t-
.

FIG. 2. Cross section of the stable structure of an aperiod
NaCl system containing two substitutional impurity Cl ions~case
II ! calculated by the present algorithm~open circles!, together with
that of the supercell method~closed circles!. The impurity ions are
shown by open and closed diamonds in the results of these t
methods. A dashed line indicates a supercell with 216 constitue
ions.
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56 4835COMPUTATIONAL METHOD FOR APERIODIC . . .
present algorithm. From this figure, it has been found that
relaxation ratio obtained by the small supercell contain
216 atoms reaches only about 55%. With increasing siz
supercells, the relaxation ratio of the four atoms approac
the value of 1.0, and a good agreement is given by the
percell with 2744 constituent atoms. However, in the cal
lation based on this supercell, CPU time which is about
times longer than that of the proposed algorithm has b
consumed. In Fig. 3, the impurity energyDEcell

SC is also
shown as a ratio toDE of 15.7 eV obtained by the propose
algorithm. EvenDEcell

SC calculated by the large supercell co
taining 2744 atoms is 9.9 eV, and this value is only 63%
DE as shown in Fig. 3. This result indicates that t
asymptotic behavior of energies depending on system s
is much slower than that of the lattice relaxation, and
supercell containing 2744 constituent atoms is not la
enough to calculate the energy change introduced by im
rity atoms, although case II has simple lattice relaxation.

IV. DISCUSSIONS

First, let us discuss the numerical accuracy attained by
present algorithm. Since the supercell method assumes
periodic boundary condition, artificial interactions exist b
tween the impurity atoms inevitably positioned in each u
cell. This periodic approximation is not introduced in th
present algorithm, and it is capable of evaluating a va
which corresponds to the asymptotic solution obtained by
infinite-sized supercell as shown in Fig. 3. Moreover, t
algorithm has the following advantage for the Coulomb
teraction: For aperiodic systems where the charge neutr
has been broken by local impurity atoms, in the case of
supercell method it is necessary to add a uniform backgro
charge to each constituent atom, in order to keep the ch
neutrality in the whole system and avoid a divergence
total potential energies. For example, in case II, unifo

FIG. 3. Atomic displacements and impurity energy for case
obtained by the supercell method are shown as a ratio to the c
sponding result calculated by the proposed algorithm. Solid li
show the relaxation ratio of four atoms numbered in Fig. 2, an
dashed line shows the energy ratio. The values of the atomic
placements and the impurity energy calculated by the propose
gorithm are shown as 1.0.
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charges (qadd54/NSC) have been added to allNSC atoms in a
unit cell. Since the amount of additional charges is usua
small, their existence has no serious effect on the interato
potential itself and the evaluation of forces. It, however, h
a large influence on the evaluation of energies. As show
Fig. 3, the impurity energy for case II is underestimated
the supercell method, and the deviation from that of
present algorithm is about 5.8 eV. This disagreemen
caused by two artificial influences introduced in the super
method: one originates from impurity atoms periodically p
sitioned in surrounding cells, and the other originates fr
background charges added to each atom. If only the for
influence exists, the energy changeDEcell

SC will be overesti-
mated because the interaction between the impurities p
tioned in different supercells is always evaluated as a p
tive value. On the other hand, since the background cha
has the opposite sign of the impurity ions, the interact
between them is given as a negative value and consequ
causes the above-mentioned underestimation. In addition
approach ofDEcell

SC to the asymptotic value is very slow a
shown in Fig. 3, which implies that it is difficult for the
supercell method to even estimate the exact value for c
pletely isolated impurities. In contrast to this convention
method, since the proposed algorithm does not need any
tificial corrections for charge distribution, impurity energie
for ionic aperiodic systems can also be evaluated exactly

Next, the computational time is discussed as the sec
advantage of the present algorithm. The efficient MM calc
lations reported in Sec. III are due to the calculation of forc
which is given by the two terms with the following chara
teristics: The first termDFj

(1)( i ) shown in Eq.~17! is evalu-
ated from the physical quantity for the reference syst
f j

0( i ) given by Eq.~22!. Then, the amount of calculations fo
DFj

(1)( i ) becomes small, and its order is given byN0Nall ,
whereNall means the number of all atoms interacting onN0

atoms. In this order estimation, the second term in Eq.~17! is
negligible sinceNimp!N0Nall . The value ofNall is related to
the lattice sum in Eq.~22!, and the Ewald method can b
applied to this summation for the long-ranger 2n interac-
tions. The second termDFj

(2)( i ) given by Eq.~18! is written
in a function ofDr i j , and its amount of calculations is est
mated asNDNall8 . In contrast to the force whose functio
form is given byr 2(n11), the force difference introduced in
the proposed algorithm roughly showsDrr 2(n12). This
function form causes the rapid convergence of Eq.~18!, and
we can obtainNall8 !Nall . As for case II, the amount of cal
culations in the present algorithm is roughly given
N0Nall;1036000 andNDNall8 ;200033000. In MM simula-
tions, it is not necessary to calculate the first termDFj

(1)( i )
during iteration steps, if the initial structure of the referen
system has been optimized before the simulation. T
N0Nall can be omitted in the computational time estimati
for MM simulations. On the other hand, the calculatio
based on the supercell method has the order ofNSCNall ,
where the Ewald method is also applied to the lattice sum
the long-ranger 2n interactions. In the calculation for case
by using the supercell containing 2744 constituent ato
NSCNall becomes about 3000375 000. Consequently we ob
tain (NSCNall)/(NDNall8 );40, which indicates that the MM
calculation based on the proposed algorithm is acceler
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about 40 times as fast as in the supercell method. This ro
estimation corresponds to the result reported in Sec. III,
it has been ascertained that the proposed algorithm achi
the saving of much computational time as compared with
conventional supercell method. A similar estimation is p
sible for the calculation of energies. However, it should
noted that the energy differenceDEj

(2) based on the Cou
lomb interaction does not converge as rapidly asDFj

(2)( i )
because of the long-ranger 21 interaction and the existenc
of both cations and anions, so thatNall8 is required to have a
larger value than the force difference as mentioned in S
II C.

V. CONCLUSIONS

In this paper, an algorithm of MM and MD calculation
has been presented for aperiodic systems with long-ra
interactions. Since this algorithm is particularly effective f
the long-range Coulomb interaction, the MM calculatio
have been carried out for ionic systems containing local
purity atoms. The calculated lattice relaxation and impur
energy have been compared with the results calculated by
conventional supercell method.

A characteristic of this algorithm is that it describes t
crystal structure of the aperiodic system based on the de
tion from a periodic system. According to this descriptio
two characteristics of the aperiodic system, the infiniten
and the local disorder, are simultaneously taken into acco
and physical quantities can be evaluated for completely
gh
d
es
e
-
e

c.

ge

-
y
he

ia-
,
s
t,

o-

lated impurities. Moreover, for aperiodic systems where
charge neutrality has been lost, the present algorithm d
not need any additional background charges, which ena
us to perform MM and MD simulations for ionic aperiod
systems with real charge distribution.

According to the above-mentioned description of crys
structures, the impurity energy and the force difference
evaluated from the two terms. These two terms, which
characterized by a small amount of calculations and a ra
convergency, achieve efficient MM simulations. In the te
calculations, the computational time which is several tens
times faster than that of the conventional supercell met
has been obtained. This result implies that there is a po
bility of applications to systems whose number of constitu
atoms is more than an order of magnitude larger than pre
systems.

In this paper, only the implementation of the MM calc
lations based on the proposed algorithm has been repo
The extension for MD calculations is now in progress. F
thermore, from the viewpoint of practical applications, it
important to combine this algorithm withab initio calcula-
tions, which is an open and interesting problem for a futu
study.
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