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Computational method for aperiodic systems: Molecular mechanics simulations
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For aperiodic systems with long-range interactions, an algorithm of molecular mectidiMoscalculations
is proposed. In order to treat the aperiodic system as an infinite system containing completely isolated disorder,
the crystal structure is described based on the deviation from a periodic system, and potential energy and forces
are evaluated as differences from those for the periodic system. The MM calculations for ionic systems
containing local impurity atoms have been carried out as test calculations. The obtained lattice relaxation and
energy of impurities have been compared with the results of a conventional supercell method performed based
on five different sizes of unit cells, and the advantages of the proposed algorithm in terms of computational
accuracy and time have been ascertained. For aperiodic systems where the charge neutrality has been lost
because of the existence of ionized impurities, this algorithm realizes MM calculations without artificial charge
neutral conditions which are usually required in the supercell method. The algorithm also has a possibility of
the application to molecular dynamics calculatiof&1063-651X%97)01610-3

PACS numbegps): 02.70.Ns, 61.72:y

I. INTRODUCTION times longer will be consumed. Although this estimation is
rough, it implies that even checking the dependence on sys-
Molecular mechanicstMM) and molecular dynamics tem sizes is difficult for Coulomb interacting systems.

(MD) simulations have become recognized as useful tools As a sophisticated approach to aperiodic systems, a
for research in various scientific field$,2]. Recently, their ~Green-function method to calculate the electronic states of
importance has been growing, particularly in applications tadeep levels in semiconductors was developed independently
complex and large-sized systems. Amorphous structures, iny two groups in the late 1970g,5]. In this method, a
purity systems, liquid crystals, polymers, and so on are menlocalized defect, which cannot be described based on ex-
tioned as such systems, and several phenomena such as ipanded Bloch states, is represented by a perturbation poten-
purity diffusion, surface adsorption, ion implantation, tial for a perfect crystal, and this perturbation potential is
radiation damage, and fracture are also associated wittletermined self-consistently so as to coincide with the Green
complex-structured systems. Since a crystallographic periodunction for the perfect crystal at infinity. This Green-
icity has disappeared in these systems, a supercell methodfisnction method is a skillful approach to aperiodic systems.
usually adopted in MM and MD calculations for them. This It is, however, necessary to realize a more efficient calcula-
method is an expedient approach to aperiodic systems, aribn of forces acting on each constituent atom from the view-
has been widely applied in botb initio and empirical cal- point of MM and MD calculations.
culations. Particularly as for the former, well-developed en- It is the purpose of this paper to propose a method of MM
ergy band calculations can be directly applied. In the superand MD calculations for aperiodic systems. This algorithm is
cell method, aperiodic systems are approximately describebased on the premise that interatomic interactions have been
by assuming the periodic boundary condition, so that largedetermined by some method beforehand. Empirical inter-
sized supercells are required for the computational accuracgtomic potentials enable us to perform MM and MD calcu-
in order to diminish interactions with crystal imperfections lations for large-sized systems practically, whereas their
involved in surrounding cells. However, it is difficult to treat function forms directly influence the accuracy of calculated
sufficiently large-sized systems because of the restriction gbhysical quantities. In the present algorithm, when inter-
computational time, although computer abilities have beemtomic potential functions have been given, the focus is on
increasing rapidly. Thus the problem of the numerical inac-how accurately physical quantities of the aperiodic system
curacy depending on system sizes still remains unsolved inan be evaluated for an infinite system containing completely
the supercell method, and several investigations concerningolated disorder. For this purpose, atomic positions of the
it have been reporteB]. This problem is most serious for aperiodic system are described by the deviation from a peri-
long-range interatomic interactions. Generally, imperfectionsdic system, and potential energy and forces are calculated
in the above-mentioned aperiodic systems are given as laased on this description. As interatomic interactions, typical
charged particle, such as impurities in semiconductors, stwng-range ones whose function forms are giverr b} are
that it is necessary to treat a Coulomb interaction preciselgonsidered. In the MM calculations for ionic systems, advan-
without the dependence on system sizes. However, to redut¢ages with respect to both numerical accuracy and computa-
the influence of system sizes and obtain accuracy an order ¢gibnal time have been ascertained as compared with the con-
magnitude higher in the calculation of total energies, oneventional supercell method.
needs a larger system whose constituent atoms are abbut 10 This paper is organized as follows: In the next section, the
times as many as the prior system because of the long-randgermulation of the present algorithm is described. In Sec. llI
r 1 interaction, and thus computational time of abouf 10 the MM calculations for ionic systems containing substitu-
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tional impurity atoms are reported as numerical tests, and thian Eq. (3), A,(i) represents the potential parameter ofitte
obtained lattice relaxation and energy of impurities are comatom, and the subscrigt specifies the type of interatomic
pared with those of the supercell method. For more detaileéhteractions. In the case of Coulomb interactiaby,, is
comparisons between the two methods, discussions concergiven by
ing the computational accuracy and time are given in Sec.

IV. Finally, a short summary is presented in Sec. V. i

ac)a(j)
47780 I’ij ’ (6)

deoullij) =

Il. FORMULATION whereq(i) is the point charge of théth atom and corre-
A. Crystal structures sponds to the potential parame#es, (i). Other interactions

written by Eq.(3) are multipole-multipole and van der Waals
In this paper, aperiodic systems are defined as infinit Y Eq.3) P P

X o ) teractions whose potential functions are given mby".
systems where atomic positions are locally disordered. A P g y

L T ; A¥hese interactions with a small value of especially the
such an aper|9d|c system, a crystal containing local IMPUIty- 4 10mb one, are well known as a long-range interaction,

S : ! ) @hd the Ewald method is generally required for their lattice
relaxation in a local region, and this relaxation can be de;

, i - sums. As discussed in Sec. |, the problem of the supercell
scribed by the deviation from a crystal containing no local

. . O tmethod is most serious in calculations for systems with long-
impurity atoms, which is called the reference system herea fange interactions. Based on H®), general long-range in-
ter. From this viewpoint, the position of théh atom in the

e e teractions withr " function forms can be treated in this
aperiodic system is given by algorithm. Interatomic interactions which are not written by
r(i)=roG)+Ar(i), (1) Eq. (3) are Born-Mayer-type po_tential, many-body intera_c-

tions such as a valence-force field model, and so on. Since
these interactions are regarded as short-range ones, there is
) ) %o problem in evaluating physical quantities based on them
system, andAr(i) represents the displacement of thé  ,y eans of a conventional way. Therefore the assumption

atom causgd by the Ioca! Impurity atoms. , of Eq. (3) does not impose any restrictions on applications of
As mentioned above, it is reasonable to consider a relaxmiS algorithm practically.

ation region centered at the local impurity atoms. This region The potential parameter for the aperiodic systapti)
R, is determined so as to contain all atoms whiasg(i)| is ; .

P ; obeys the following rule:
not zero. In the center &R, , |Ar(i)| is relatively large, but

wherer®(i) represents the atomic position in the referenc

it becomes negligibly small near the boundaryRyf. The _ ;&Ag(i) for impurity atoms (i=1, ... Ninp)
number of atoms insid&, is given byN,, and it always Agi =A%) otherwise
showsNy>Niy,, whereNjy,, is the number of the impurity ¢ ’ (7)

atoms. On the other hand, the reference system does not have
any local impurity atoms, so that it has translational periodwhereAg(i) is the potential parameter of the corresponding
icity like perfect crystals. Thus®(i) is written also in the ith atom in the reference system, and is also represented by

following notation:
s

S
— a0
—Aé(o

because of the translational periodicity of the reference sys-
ors - _ _ tem. According to values oAg(i) and A(i), all types of
wherer™(7) means the position of theth atom in thdth unit  impurity atoms(substitutional impurity atoms, interstitial im-

AY(i)=A? for all I, ®

r°<i>=r°<f), @

cell in the reference system. purity atoms, and defegtgan be treated as follows: When
Ag(i)aﬁo andAg(i)[aﬁAg(i)]#O, the atomi in the aperiodic
B. Interatomic potentials system is given as a substitutional impurity atom. And, an

interstitial impurity atom is given b)Ag(i)=0 and Ag(i)
#0; a defect is given b)b\g(i)aﬁo andA,(i)=0, where the
atoms whose potential parameters are zero are called dummy
atoms. As for interstitial impurity atoms, dummy atoms are
initially positioned in the reference system so as not to
change its periodicity, and defects are treated as dummy at-
d(r=22 derip=2> AdDALD¥rij), (3 oms in the aperiodic system. The consideration of those
¢ ¢ dummy atoms has no effect on the evaluation of physical
quantities for both the reference and the aperiodic systems,
V\{hereLij is the distance between the atomandj which is  because their potential parameters have been set at zero.
given by

In the present algorithm, pair-type potentials are consid
ered as interatomic interactions. The pair-type potential
between theth and thejth atoms is represented by the fol-
lowing expression:

C. Energies and forces

: (4)

ry=Ir In MM and MD simulations, it is necessary to calculate
total potential energies and forces acting on constituent at-

rij=r(i)—r()-. (5) oms. In the present algorithm, these quantities for the aperi-
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odic system are estimated as differences from the reference
system. Then, the energy differens& and the force differ-
enceAF(i) are defined as Nimp

+A§<i>§ [A))—

AF&() =[AL) =AY (1)

AN, aD
AE=E-E° 9)
all

SELLOAOT AT 1y st

and

AF(i)=F(@i)—F%i), (10)

+0O((Ar)?),

1 i, ) 0
whereE andE° are the total potential energies for the ape- i 2/;7 ATii gl Vg Ty)
riodic and the reference systems, @ (d) andF°(i) are the
forces acting on théth atom in the aperiodic and the refer-
ence systems, respectively. SinEeand E° represent the with
total potential energies for the whole systems, their values
are divergent. However, the energy differenkE has a fi-
nite value, which corresponds to the fact that the lattice re-
laxation occurs only in a local region. Sin&¢E represents
the energy change caused by local impurities, it is called thand

(18)

k

erij) (19

Oy=(—1)k
lpga'g (r”) ( 1) arijyaﬁrij”g...

r=r0

impurity energy hereafter.

The impurity energ\AE and the force differencaF(i),
whose definitions are given by Eq®) and(10), are explic-
itly calculated from two terms as follows: FirskE is writ-
ten

AE=§§‘, AE§=§§: [AEM+AEP], (11)
where
Nimp Nimp
AE?EZ [Ag(i)—Ag(i)]eg(i)JrZ [Agi)—AYi)]
Nlmp
><E [AL) =AY TwerD), (12)
Np all
Z Agi) E A {8 D)
ieRy
+3lor PPlrD+o(en®), (13
with
dk
D =g e e (14
and
riy=|rij|=1Irgl. (15
Second AF(i) is written
AF(i)=2 [AFL()]=2 [AFP()+AFP(0)],
3 13
(16)

\t/)vhere thea components oA F(i) andAFP)(i) are given
y

At o= (Ar) o= (rj =1 (20

In Egs.(12) and(17), €¢ and 2 , represent the physical
guantities for the reference system, and are given by

NO all

o] =% 3 A

eg(i)=eg(ls) —ef ,S,)wg(rfgls;)) (21)

and

NO all
=12 |12 )= = A} Juttirle)
(22)

Since the reference system is a periodic one, the notatjon (
is adopted in Eqs(21) and (22), andN°® means the number
of atoms per unit cell. Because of the translational periodic-
ity of the reference system, the Ewald method can be applied
to the lattice sums in Eq$21) and (22) for the long-range

r " interactions[6,7]. By usmg eg(o) andfg(o) the total
potentlal energy per unit cei,, and the force acting on the
sth atom in the Oth unit celF°(3) are calculated for the
reference system as the following expressions:

EC,=>, ENEO AO(S eo(s) (23)
cell 7 2 S E\0/ €0
and
FO(;):2§ {A?(S)f@(é) . (24)

According to the framework of this algorithm, there are
two kinds of discrepancies between the aperiodic and the
corresponding reference systems: one is the discrepancy be-
tween the potential parameters and the other is that between
the atomic positions. Each of them independently contributes
to the two terms in Eq911) and (16) as follows: The first
termsAES) and AFE(i) are derived from the discrepancy

betweerA(i) andAX(i), so that the summation in E¢d.2)
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and (17) is running over theN;,, impurity atoms only. On locity of each atoni at the timet+ At are calculated based
the other hand, the second term&(” and AF{(i) are  on the forceF(i) at the timet by solving Newton's equa-
derived from the discrepancy betweeti) and r°(i), and t|ons.. Ir.] bl presgnt. algprlthm, Bl atom|c p03|.t|on n the
thus are given as a function 6f;; or Ar;; as shown in Egs. aperiodic systent(i) is given by Eq.(1) in each iteration

(13) and(18). In these equations, the summatiBfi is taken step of MM and MD calcglations, where the atomic position
for all atoms interacting with théeth atom inside the relax- in the reference systenf(5) and the displacemedtr (i) are

ation regiorR, . Since the values ofrj; andAr;; reach zero simultaneously calculated fror°() and AF(i), respec-

rapidly as the atonj goes away from the relaxation region tively. The iterative calculation for the reference system is

R, , rapid convergence can be achieved in the calculations diot trelqutlredt dun;']]g t?)e MM dcaltcmjjlatlons, .'f '?nl oi)tm"gzed f
AE® and AF)(i). The aperiodic system is characterized crystal structureé has been adopted as an initial structuré o
tge reference system. In MD calculations, the atomic veloci-

by the infiniteness as a crystal and the local disorder caus . o/ X L
. . - . . . lesv(i) andv”(i) are also considered for the aperiodic and
by isolated impurities. The infiniteness is taken into accoun S 0 .

he reference systems, andi) is given by v°(i)+Av(i),

n the. .ﬁrSt termsAE(g ) and AF(f )(l)s thrOUgg] Sthe physical the same as in Eq1). However, to apply the present algo-
quantlt!es for the refergnce SySt@?(O) andf ¢(o)- A';d' the rithm directly to MD calculations, the unit cell of the refer-
local disorder is described by the second tenter;f_f) and  ence system should be taken much larger than that in MM
AFP)(i) which are given by the atomic displacements fromcalculations because of the lattice vibration caused by the
the reference system. temperature effect, and there is a difficulty in realizing a
From the mathematical viewpoint, the first temEgl) is  practical MD calculation based on the present algorithm
regarded as the zero-order term in a Taylor expansiof of from the viewpoint of the efficiency for computational time.
for ory;, andAFg})(i) is similarly regarded as that ¢%(i)  The size of the relaxation regidR, can be variable during
for Arj;. And, the second terma E(§2) andAFg?)(i) corre-  progress of the MM and MD calculations, which means that
spond to the higher-order terms in those Taylor expansiondt iS possible to optimize the atomic numi¥x which gives
which implies that a computational error occurs in the evaluthe degree of freedom to describe the lattice relaxation. This
ation of AE® andAF(gz)(i), if or;; andAr;; become con- variability of the relaxation regioR, is one of the advan-
siderably large during MM and MD simulations. We can t@ges of the proposed algorithm as compared with the super-
resolve this problem by changing the atomic positions in thec€ll method which does not allow the size of unit cells to be
reference systemf(i) so as to decreasar(i)|. This modi- changed during the simulations.
fication can be carried out by the consideration of dummy

atoms in the reference system, such as in the above- IIl. MM CALCULATIONS
mentioned case of the interstitial impurity atoms. i ) ) ]
In Egs.(13) and(18), the summatiorEf‘” is taken for all In this section, the numerical results of MM calculations

are presented. In order to make a clear comparison between
the present algorithm and the supercell method, the MM cal-
culations have been carried out for ionic systems with the
long-range Coulomb interaction. As a typical ionic system,
NaCl alkali halide crystal has been chosen here. The inter-
atomic potential for NaCl is given by the Coulomb and the
Born-Mayer-type potentials as follows:

atoms interacting with théth atom inside the relaxation re-
gion Ry . The calculations oAE{”) and AF?)(i) converge
rapidly, since these terms are given as a functiodref or
Arj; whose value reaches zero rapidly as the ajogoes
away from the relaxation regidR, . This rapid convergence
is obtained particularly in the calculation AF)(i). How-
ever, in the calculation oAE(gz) based on the Coulomb in-

teraction, the convergence is not so easily achieved because e qihq(j) o
of the long-range ! interaction and the existence of both o(rij)= —+C ex;{ —C, #}
cations and anions. Thus it is desirable to take the summation 4meg  Tjj p()+p())
SO as to satisfy
al Nimp wherep(i) represents the effective radius of thk ion. The
; q(j)= 2 [a(i)—a’(j)], (25  constants; andc, are fixed at 1822 eV and 12.364, respec-

tively [8]. The values of the potential parametegfs) and

which means that the summatid}‘f” in Eq. (13) is taken to p(i) have been determined as follows(i)=1 and p(i)
keep the charge neutrality except for the impurity atoms, the. 82 A for Na ions, andj(i)=—1 andp(i)=1.85A for

same as in the Evjen method. From the same reason ﬂ% ions. According to these potential parameters, the calcu-

relaxation regiorR, also had better be determined so as toIa_ted perfect crystal structure is stabilized as a fcc structure
satisfy with the experimental lattice constara€5.63 A). In the

MM calculations based on the present algorithm, the formu-

Na Nimp lation described in Sec. Il has been applied to the long-range

q(i)=2 [a(i)—q°(i)] (26) Coulomb interaction. In the supercell method, the energy
! change caused by local impuritiasESS, which should be
compared with the impurity energhE evaluated in the

present algorithm, is defined as

i € RA
for energy calculations.
In MM calculations, each atom s iteratively moved in
proportion to the forcé(i) until the equilibrium structure is sC_ esC  —SCo
obtained, and, in MD calculations, the position and the ve- AEG=Ecei— Ecail (28)
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FIG. 1. Cross section of the stable structure of an aperiodic . 2. cross section of the stable structure of an aperiodic

NaCl system containing one substitutional impurity Cl i@ase } ¢ system containing two substitutional impurity Cl ioftase
calculated by the present algoritHiopen circleg together with that Il) calculated by the present algorithimpen circles together with

of the supercell methotclosed circles An open diamond ShOWS 4t of the supercell methoglosed circles The impurity ions are
the impurity ion in the present algorithm, and closed diamondsyy,oyn by open and closed diamonds in the results of these two

show impurity ions in neighboring cells in the supercell method. A nehods. A dashed line indicates a supercell with 216 constituent
dashed line indicates a supercell with 216 constituent ions. Na cafg s

ions and Cl anions are not distinguished in this figure for simplicity.

where ESS and ESS° represent the total potential energies ods inside the center unit cell. This result indicates that the
per unit cell for systems with the impurity atoms and withoutlattice relaxation in case | occurs in a relatively small region,
any impurity atoms, respectively. and the unit cell used in the supercell method has adequate
The MM calculations have been performed for the follow- Size to describe such a small relaxation. However, a large
ing two cases: one is a NaCl system where one Na ion hagifference between the two methods has been obtained for
been substituted by one Cl iqease ), and the other is a computational time, which means that CPU time consumed
NaCl system where two Na ions have been substituted by the supercell method is about ten times longer than that of
two Cl ions(case l). For these aperiodic systems, a perfectthe proposed algorithm. Moreover, whereas the impurity en-
crystal of NaCl whose cubic unit cell contains eight constitu-ergy AE of 6.9 eV is obtained by the proposed algorithm,
ent ions has been considered as the reference system. In thely AESS of 4.3 eV is evaluated by the supercell method.
MM calculations performed here, the perfect crystal of NaClThese disagreements are discussed in more detail in the next
is given as an initial structure, and the same conditidhe  section.
constant rate at which each atom is moved and the conver- Case Il The calculated stable structures of aperiodic
gence criteriopare adopted in the two methods for a direct NaCl system containing two impurity atoms are shown in
comparison between them. The MM calculations have beekig. 2, where the same notations as in Fig. 1 are adopted. In
judged to be convergent, when the maximum force becamease I, the two substituted ions cause an anisotropic relax-
0.01 times that in the initial structure. ation which has a larger expansion than that of case I. The
Case | The calculated stable structures of an aperiodiadelaxation regionR, containing 1815 £5X 11X 11) ions
NaCl system containing one substitutional impurity ion arehas been adopted in the present algorithm. In Fig. 2, the two
shown in Fig. 1, where open and closed circles indicate thatable structures obtained give a disagreement which is sig-
ionic positions obtained by this algorithm and the supercelhificant even inside the center cell. This result means that,
method, respectively. Whereas only one impurity i@m  for aperiodic systems containing a large relaxation such as
open diamong exists in the structure of the present algo- case Il, the supercell with 216 constituent ions is not large
rithm, artificial impurity ions(closed diamondsalso exist in  enough to investigate the structural stability.
neighboring cells in the supercell method. The relaxation re- In order to investigate the dependence on the size of su-
gion R, having the same size as the unit cell of the supercelpercells and make a comparison between the two methods
method, which is shown by a dashed line, has been considiuantitatively, the MM calculations for case Il have been
ered in the present algorithm. Although the stable structur@erformed by using four more supercells of larger sizes. The
calculated by the supercell method shows artificial latticecalculated displacements of four atoms, which are specified
relaxation because of the periodic boundary condition, theren Fig. 2, are shown in Fig. 3. The solid lines indicate the
is no notable difference between the results of the two methrelaxation ratio to the atomic displacements calculated by the
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11— , i _ charges @,4= 4/N°9 have been added to IS¢ atoms in a
unit cell. Since the amount of additional charges is usually
10 small, their existence has no serious effect on the interatomic
' potential itself and the evaluation of forces. It, however, has
a large influence on the evaluation of energies. As shown in
091 ) ) Fig. 3, the impurity energy for case Il is underestimated by
R oy rati o the supercell method, and the deviation from that of the
08 present algorithm is about 5.8 eV. This disagreement is
caused by two artificial influences introduced in the supercell
0.7 method: one originates from impurity atoms periodically po-
. sitioned in surrounding cells, and the other originates from
0.6 | ammememeTI I background charges added to each atom. If only the former
influence exists, the energy chand&:S, will be overesti-
0.5 . . . . . mated because the interaction between the impurities posi-
216 512 1000 1728 2744 tioned in different supercells is always evaluated as a posi-

Size of supercells (atoms) tive value. On the other hand, since the background charge
o ‘ . has the opposite sign of the impurity ions, the interaction
FIG. 3. Atomic displacements and impurity energy for case Il petween them is given as a negative value and consequently

obtained by the supercell method are shown as a ratio o the corrgyyses the above-mentioned underestimation. In addition, the
sponding result calculated by the proposed algorithm. Solid "ne%pproach ofAESC

) ) I o) to the asymptotic value is very slow as
show the relaxation ratio of four atoms numbered in Fig. 2, and &hown in Fig. 3, which implies that it is difficult for the

dashed line shows the energy ratio. The values of the atomic dls?-upercell method to even estimate the exact value for com-
placements and the impurity energy calculated by the proposed al- . - L . .
letely isolated impurities. In contrast to this conventional

ith h 1.0. P : .
goriim are shown as method, since the proposed algorithm does not need any ar-

tificial corrections for charge distribution, impurity energies

present algorithm. From this figure, it has been found that thg, i, hic aperiodic systems can also be evaluated exactly.
relaxation ratio obtained by the small supercell containing

percell with 2744 constituent atoms. However, in the calcu-

. . . . (1) . . . _
lation based on this supercell, CPU time which is about 4%{;23“;50'r;]rhti:rSthtesrigr £ u(gq t?thO\flgr' TheEqrggeliceeVi{ustem
times longer than that of the proposed algorithm has bee bhy q y y

sC Pg(i) given by Eq.(22). Then, the amount of calculations for

consumed. In Fig. 3, the impurity energyEg, is also )7 . L
shown as a ratio taE of 15.7 eV obtained by the proposed AFg“(i) becomes small, and its order is given N>9Na,|,
whereN,, means the number of all atoms interactingh

; SC
algorithm. Evena Ej calculated by the large supercell con toms. In this order estimation, the second term in(&@). is

taining 2744 atoms is 9.9 eV, and this value is only 63% ofa . . .
AE ags shown in Fig. 3. This result indicates 3:hat the negligible SiCeN;mp<N’Ny . The value o, is related to

asymptotic behavior of energies depending on system sizé[age Iliitélct?) ‘:fﬁg] éﬁnlfr?](az“zgnir;? ;[E: IEo Vr\]'a_lgarr:“é[,t‘ oigt:g::-b €
is much slower than that of the lattice relaxation, and the PP 9 9

supercell containing 2744 constituent atoms is not largdionS: The second terdyF.”(i) given by Eq.(18) is written
n a function ofAr;;, and its amount of calculations is esti-

enough to calculate the energy change introduced by impd h

rity atoms, although case Il has simple lattice relaxation. Mateéd asNyNg. In contrast to the force whose function
form is given byr ~("* 1), the force difference introduced in

the proposed algorithm roughly showsrr ~("*2). This
IV. DISCUSSIONS function form causes the rapid convergence of @@), and

First, let us discuss the numerical accuracy attained by th&/€ can obtaiNg<Ng,. As for case II, the amount of cal-
present algorithm. Since the supercell method assumes tf&lations in the present algorithm is roughly given by
periodic boundary condition, artificial interactions exist be-N"Nai~ 10X 6000 andN,Ng~2000<3000. In MM simula-
fween the impurity atoms inevitably positioned in each unittions, it is not necessary to calculate the first texi{"(i)
cell. This periodic approximation is not introduced in the during iteration steps, if the initial structure of the reference
present algorithm, and it is capable of evaluating a valugystem has been optimized before the simulation. Thus
which corresponds to the asymptotic solution obtained by th&l’N can be omitted in the computational time estimation
infinite-sized supercell as shown in Fig. 3. Moreover, thisfor MM simulations. On the other hand, the calculation
algorithm has the following advantage for the Coulomb in-based on the supercell method has the ordeNTN,,
teraction: For aperiodic systems where the charge neutralitwhere the Ewald method is also applied to the lattice sum for
has been broken by local impurity atoms, in the case of théhe long-range " interactions. In the calculation for case Il
supercell method it is necessary to add a uniform backgrounbly using the supercell containing 2744 constituent atoms,
charge to each constituent atom, in order to keep the charg‘éSCNau becomes about 306075 000. Consequently we ob-
neutrality in the whole system and avoid a divergence otain (NS“N;)/(NyN},)~40, which indicates that the MM
total potential energies. For example, in case Il, uniformcalculation based on the proposed algorithm is accelerated
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about 40 times as fast as in the supercell method. This roudlated impurities. Moreover, for aperiodic systems where the
estimation corresponds to the result reported in Sec. lll, andharge neutrality has been lost, the present algorithm does
it has been ascertained that the proposed algorithm achievest need any additional background charges, which enables
the saving of much computational time as compared with theis to perform MM and MD simulations for ionic aperiodic
conventional supercell method. A similar estimation is pos-systems with real charge distribution.

sible for the calculation of energies. However, it should be According to the above-mentioned description of crystal
noted that the energy differenmeE(gz) based on the Cou- structures, the impurity energy and the force difference are
lomb interaction does not converge as rap|d|yM§E§2)(|) evaluated from the two terms. These two terms, which are
because of the long-range ! interaction and the existence Characterized by a small amount of calculations and a rapid
of both cations and anions, so thd}, is required to have a convergency, achieve efficient MM simulations. In the test

larger value than the force difference as mentioned in gecalculations, the computational time which is several tens of
Il C. times faster than that of the conventional supercell method

has been obtained. This result implies that there is a possi-
V. CONCLUSIONS bility of applications to systems whos<_a number of constituent
atoms is more than an order of magnitude larger than present
In this paper, an algorithm of MM and MD calculations systems.
has been presented for aperiodic systems with long-range In this paper, only the implementation of the MM calcu-
interactions. Since this algorithm is particularly effective for lations based on the proposed algorithm has been reported.
the long-range Coulomb interaction, the MM calculationsThe extension for MD calculations is now in progress. Fur-
have been carried out for ionic systems containing local imthermore, from the viewpoint of practical applications, it is
purity atoms. The calculated lattice relaxation and impurityimportant to combine this algorithm withb initio calcula-
energy have been compared with the results calculated by th®ns, which is an open and interesting problem for a future
conventional supercell method. study.
A characteristic of this algorithm is that it describes the
crystal structure of the aperiodic system based on the devia-
tion from a periodic system. According to this description,
two characteristics of the aperiodic system, the infiniteness The author would like to thank S. Itoh for stimulating
and the local disorder, are simultaneously taken into accoundiscussion, and is grateful to K. Ando of Toshiba Corpora-
and physical quantities can be evaluated for completely isotion for encouragement throughout this work.
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